久久久久99人妻一区二区三区,风韵多水老熟妇口爆69式,欧美,日韩,国产,专区,舌L子伦熟妇ΑV

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁  >  技術(shù)文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時間:2021-11-30  |  點擊率:1614

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


中文字幕丰满乱子伦无码专区| 国产成人无码精品久久久露脸| 少妇大叫太大太爽受不了| 一边吃奶一边添P好爽视频| 日本精品巨爆乳无码大乳巨| 久久无码AV中文出轨人妻| 色五月丁香五月综合五月4438| 成人漫画网站| 乱码丰满人妻一二三区| 放荡娇妻张开腿任人玩H| 八戒八戒视频在线WWW观看| 亚洲小鲜肉与欧美猛男的区别| 成全视频在线观看免费高清| 深田咏美AV一区二区三区| 午夜欧美精品久久久久久久| 98国产精品人妻无码免费| 精品久久香蕉国产线看观看亚洲| 精品一区二区三区四区五区六区| 西西人体WWW大胆高清| 日韩AV片无码一区二区不卡电影| 农村熟妇高潮精品A片| 无码国产精品一区二区人妻| 久久人妻少妇嫩草AV无码专区| 日本影片和韩国影片推荐| 淑娟两腿间又痒了| 永久免费观看国产裸体美女| 大乳VIDEOS巨大吃奶| 男女无遮挡猛进猛出免费视频| 真人高清实拍女处被破的视频| 久久久久无码国产精品一区| 专干老熟女视频在线观看| 久久久久亚洲AV成人无码网站| 免费人成视频X8X8入口观看大| 精品久久久久久中文字幕人妻最新| 欧美性大战久久久久久久| 精品国产乱码一区二区三区APP| 一个人看的视频免费高清在线观看| 辽宁少妇高潮45分钟| 最近更新2019中文字幕7| 最近中文字幕无吗高清| 久久天天躁狠狠躁夜夜免费观看|